NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway.
نویسندگان
چکیده
Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular epithelial cell protein known to play a role in host defense at mucosal surfaces. Here we show that a ligand specific for NOD1, a peptide derived from peptidoglycan, initiates an unexpected signaling pathway in human epithelial cell lines that results in the production of type I IFN. Detailed analysis revealed the components of the signaling pathway. NOD1 binding to its ligand triggered activation of the serine-threonine kinase RICK, which was then able to bind TNF receptor-associated factor 3 (TRAF3). This in turn led to activation of TANK-binding kinase 1 (TBK1) and IkappaB kinase epsilon (IKKepsilon) and the subsequent activation of IFN regulatory factor 7 (IRF7). IRF7 induced IFN-beta production, which led to activation of a heterotrimeric transcription factor complex known as IFN-stimulated gene factor 3 (ISGF3) and the subsequent production of CXCL10 and additional type I IFN. In vivo studies showed that mice lacking the receptor for IFN-beta or subjected to gene silencing of the ISGF3 component Stat1 exhibited decreased CXCL10 responses and increased susceptibility to Helicobacter pylori infection, phenotypes observed in NOD1-deficient mice. These studies thus establish that NOD1 can activate the ISGF3 signaling pathway that is usually associated with protection against viral infection to provide mice with robust type I IFN-mediated protection from H. pylori and possibly other mucosal infections.
منابع مشابه
Nucleotide-binding oligomerization domain 1 and gastrointestinal disorders
Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular sensor that detects small peptides derived from the cell wall component of intestinal microflora. NOD1 is expressed in both non-hematopoietic cells such as epithelial cells and hematopoietic cells such as antigen-presenting cells. Detection of its ligand by NOD1 leads to innate immune responses through activation of nuclear ...
متن کاملNOD1-Mediated Mucosal Host Defense against Helicobacter pylori
Infection of the stomach with Helicobacter pylori is an important risk factor for gastritis, peptic ulcer, and gastric carcinoma. Although it has been well established that persistent colonization by H. pylori is associated with adaptive Th1 responses, the innate immune responses leading to these Th1 responses are poorly defined. Recent studies have shown that the activation of nucleotide-bindi...
متن کاملNucleotide oligomerization domain 1 enhances IFN-γ signaling in gastric epithelial cells during Helicobacter pylori infection and exacerbates disease severity.
Virulent Helicobacter pylori strains that specifically activate signaling in epithelial cells via the innate immune molecule, nucleotide oligomerization domain 1 (NOD1), are more frequently associated with IFN-γ-dependent inflammation and with severe clinical outcomes (i.e., gastric cancer and peptic ulceration). In cell culture models, we showed that H. pylori activation of the NOD1 pathway ca...
متن کاملTIFA Signaling in Gastric Epithelial Cells Initiates the cag Type 4 Secretion System-Dependent Innate Immune Response to Helicobacter pylori Infection
Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, causing inflammation which, in some cases, leads to gastric ulcers and cancer. The clinical outcome of infection depends on a complex interplay of bacterial, host genetic, and environmental factors. Although H. pylori is recognized by both the innate and adaptive immune systems, this rarely results in bacterial cleara...
متن کاملThe Jak-Stat Signaling Pathway of Interferons System: Snapshots
Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 120 5 شماره
صفحات -
تاریخ انتشار 2010